Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters








Language
Year range
1.
China Journal of Chinese Materia Medica ; (24): 2858-2864, 2020.
Article in Chinese | WPRIM | ID: wpr-828074

ABSTRACT

Pre-formulation physicochemical properties of the component-based Chinese medicine of Qinqi Fengshi Fang were investigated to provide a research basis for the design of the dosage form for component-based Chinese medicine of Qinqi Fengshi Fang. The macroporous resin adsorption and refining technology was used to prepare the total glycosides extract of Gentianae Macrophyllae Radix, Panacis Majoris Rhizome and Corni Fructus respectively in the prescription of Qinqi Fengshi Fang. Their physicochemical properties were investigated, including solubility, wettability, hygroscopicity, equilibrium solubility, oil-water partition coefficient, and stability. The results showed that the total glycosides of Gentianae Macrophyllae Radix, Panacis Majoris Rhizome and Corni Fructus all had good solubility and wettability. The solubility index of each total glycoside component was greater than 85%, and the water absorption index was greater than 50%. In the range of pH 2.0-7.4, the equilibrium solubility of three kinds of total glycosides all increased with the increase of pH, showing a consistent change trend of solubility. The hydrophilicity was also suitable and similar. Overall, three kinds of total glycosides showed good stability, but strong hygroscopicity. The degree of hygroscopicity was as follows: total glycosides of Gen-tianae Macrophyllae Radix > total glycosides of Corni Fructus > total glycosides of Panacis Majoris Rhizome. Therefore, the hygroscopi-city needed to be considered in the preparation of the component-based Chinese medicine of Qinqi Fengshi Fang. The excipients and packaging materials can be properly selected to reduce the hygroscopicity of the preparation. This study provides a reference for the dosage form design of the component-based Chinese medicine of Qinqi Fengshi Fang.


Subject(s)
Cornus , Drugs, Chinese Herbal , Glycosides , Medicine, East Asian Traditional , Rhizome
2.
China Journal of Chinese Materia Medica ; (24): 2493-2498, 2019.
Article in Chinese | WPRIM | ID: wpr-773234

ABSTRACT

The standard decoction of Chinese herbal decoction pieces is a standard reference substance to measure whether different dosage forms of Chinese medicine are basically consistent with those of clinical decoction,and provides new ideas and methods for effectively solving the problems of uneven quality in Chinese medicine dispensing granules. In this study,a systematic method for evaluating the quality of Scrophulariae Radix decoction was established from the perspective of " standard decoction",providing reference for the quality control of the Scrophulariae Radix dispensing granules. 15 batches of Scrophulariae Radix decoction pieces from different origins were collected,and 15 batches of standard decoctions were prepared according to the standardized process with water as solvent.Harpagide and harpagoside were used as quantitative detection indicators to determine the content,calculate the transfer rates and determine the extraction rate. The high performance liquid chromatography( HPLC) was used to establish a standard decoction fingerprint analysis method. The results showed that the transfer rates of harpagide and harpagoside in 15 batches of Scrophulariae Radix pieces standard decoction were( 70. 84±13. 39) % and( 48. 56±6. 40) % respectively; the extraction rate was( 57. 47±5. 89) %. Nine peaks were identified in the HPLC fingerprint,and the similarity was higher than 0. 97 between the fingerprints of 15 batches of standard decoction and the control fingerprint. In this study,the preparation process of standard decoction of Scrophulariae Radix pieces conformed to the traditional decoction preparation method. The sources of the samples were representative,and the established fingerprint method was stable and feasible,which can provide reference for the preparation and quality control of Scrophulariae Radix dispensing granules.


Subject(s)
Chromatography, High Pressure Liquid , Drugs, Chinese Herbal , Reference Standards , Plant Roots , Chemistry , Quality Control , Scrophularia , Chemistry
3.
China Journal of Chinese Materia Medica ; (24): 3855-3861, 2018.
Article in Chinese | WPRIM | ID: wpr-775406

ABSTRACT

To explore the effects of shading and the expression of key enzyme genes on the synthesis and accumulation of Panax japonicus var. major saponins, different shading treatments (0%, 30%,50%) of potted P. japonicus var. major were used as test materials, the expression of three key enzyme genes(CAS,DS,-AS) of leaves and rhizomes in different growth periods of P. japonicus var. major was determined by real-time quantitative PCR, the content of total saponins was determined by ultraviolet spectrophotometry. The results indicated that, in flowering stage, CAS,DS,-AS were highly expressed in the aerial parts of P. japonicus var. major, 30% shading treatment significantly inhibited the expression of CAS in leaves and promoted the expression of DS and -AS in stems, leaves and flowers, it was speculated that the main part of saponin synthesis was leaf in this stage. Both the expression levels of DS and -AS and changes in the content of total saponins in leaves showed a tendency of low-high-low throughout the growth cycle, correlation coefficient analysis showed that there was a positive correlation between them. Compared with control, the expression levels of DS and -AS and the content of total saponins were greatly enhanced under shading treatment, 30% shading treatment significantly promoted the accumulation of total saponins. Therefore, it is suggested that 30% shading treatment should be applied to the artificial cultivation of P. japonicus var. major, which is beneficial to the accumulation and quality improvement of saponins.


Subject(s)
Gene Expression Regulation, Plant , Light , Panax , Genetics , Radiation Effects , Plant Leaves , Genetics , Rhizome , Genetics , Saponins
SELECTION OF CITATIONS
SEARCH DETAIL